THAT THEY INCORPORATED A NUCLEAR REACTOR INTO ITS DESIGN IS A BIT DISCONCERTING, BUT WE DON'T NEED TO WORRY ABOUT THAT EXPLODING DEEP UNDERGROUND, DO WE?
Another Subterrene patent
27 May 1975
See full information of this patent: U.S. Patent No. 3,885,832 dated May 27, 1975
THERE HAVE BEEN OTHER PATENTS FOR NUCLEAR-POWERED DRILLING MACHINES, EARLIER THAN THE ONES SHOWN ABOVE.
Nuclear powered drilling method and systemUS 3280923 A
AND THIS ONE, ISSUED JUST A FEW DAYS BEFORE THE LOS ALAMOS SECOND PATENT:
Apparatus and method for large tunnel excavation in soft and incompetent rock or ground US 3881777 A
Publication number US3881777 A
Publication type Grant
Publication date May 6, 1975
Filing date Jan 25, 1974
Priority date Jan 25, 1974
Inventors John H Altseimer, Robert J Hanold
Original Assignee Us Energy
ODD, YES?
SAME GUYS, DIFFERENT PATENT NUMBER.
WE'RE TOLD THIS WAS JUST A PASSING 'FAD', THAT THE NUCLEAR VERSION NEVER CAME TO BE, AND WE DO "SORT OF" KNOW THE ONE OUR RUSSIAN FRIENDS BUILT WAS A FAILURE, BUT I HAVE GREAT CONFIDENCE IN AMERICAN INGENUITY, AND IN THE MILITARY'S DEDICATION TO ACQUIRING SUCH THINGS.
SUCH A DEVICE, NUCLEAR-POWERED, WOULD REALLY BE A BOON TO GETTING ALL BRANCHES OF OUR MILITARY AND OUR FEDERAL FOLKS AND THOSE WHO OWN THEM DEEP UNDERGROUND, SAFE FROM ICBMs, EMPs, FALLING ASTEROIDS, ERRANT OR EVEN WELL-AIMED SPACE JUNK, SOLAR FLARES, ETC...OR SO THEY MIGHT BELIEVE.
Nuclear powered drilling method and systemUS 3280923 A
Houston, Tex., a corporation of Delaware Filed Sept. 21, 1962, Ser. No. 225,288 8 Claims. (Cl. 175-26) The present invention relates to a nuclear powered drilling operation and equipment for use therewith.
The entire drilling system is suspendible [SIC] on a nonconductor type cable, which eliminates need for the heavy drill string and permits use of a small, inexpensive drilling rig.
No rotary table is needed in this drilling system, and it generates its own power down-hole for operating the drill bit, for circulating fluid for drilling, and for other operations to be described later in more detail.
At the surface, only a small pump is required to adjust the drilling fluid density and to add mud to the well bore as drilling progresses. High speed round trips to change bits are possible since the only limitation is the horsepower used to operate the cable drum. Finally, because of the simplicity of the surface equipment, only a small operating crew is needed.
The invention encompasses a method for drilling boreholes with a drilling unit containing a drill bit and nuclear power for actuating the drill bit, the steps of which comprise suspending the drilling unit in a borehole on a cable or wire rope; and then actuating said drill bit to drill said borehole deeper while circulating fluid through said drill bit and collect cuttings therefrom in said borehole."
AND THIS ONE, ISSUED JUST A FEW DAYS BEFORE THE LOS ALAMOS SECOND PATENT:
Apparatus and method for large tunnel excavation in soft and incompetent rock or ground US 3881777 A
Publication number US3881777 A
Publication type Grant
Publication date May 6, 1975
Filing date Jan 25, 1974
Priority date Jan 25, 1974
Inventors John H Altseimer, Robert J Hanold
Original Assignee Us Energy
ODD, YES?
SAME GUYS, DIFFERENT PATENT NUMBER.
WE'RE TOLD THIS WAS JUST A PASSING 'FAD', THAT THE NUCLEAR VERSION NEVER CAME TO BE, AND WE DO "SORT OF" KNOW THE ONE OUR RUSSIAN FRIENDS BUILT WAS A FAILURE, BUT I HAVE GREAT CONFIDENCE IN AMERICAN INGENUITY, AND IN THE MILITARY'S DEDICATION TO ACQUIRING SUCH THINGS.
SUCH A DEVICE, NUCLEAR-POWERED, WOULD REALLY BE A BOON TO GETTING ALL BRANCHES OF OUR MILITARY AND OUR FEDERAL FOLKS AND THOSE WHO OWN THEM DEEP UNDERGROUND, SAFE FROM ICBMs, EMPs, FALLING ASTEROIDS, ERRANT OR EVEN WELL-AIMED SPACE JUNK, SOLAR FLARES, ETC...OR SO THEY MIGHT BELIEVE.
ALSO THANKS FOR ALLOWING THIS EXTENSIVE QUOTE.
[http://atomic-skies.blogspot.com/2012/07/those-magnificent-men-and-their-atomic.html]
"The Beginning
In the 1950s, atomic rockets were all the rage. The Atomic Energy Commission, the Air Force, and later NASA were running a program called Project ROVER, to develop a series of reactors for rocket propulsion. Meanwhile the Air Force's Aircraft Nuclear Propulsion Office was working on nuclear-powered turbojets and ramjets, such as the infamous PLUTO.
These propulsion reactors shared two common traits. First, because the efficiency of a propulsion reactor is determined by its temperature, the ROVER and ANPO reactors were designed to run at much higher temperatures than conventional reactors for ship propulsion or electricity generation. And second, since they needed to fit on planes or spaceships, they were designed to be very small, both in mass and volume.
One of these reactors was designed for Project DUMBO by the CMF-4 group at LASL. The DUMBO reactor consisted of a honeycomb of tungsten and uranium, through which hydrogen gas would be pumped; the nuclear reaction would heat the gas and thus produce thrust. To test the concept, LASL built a mockup using an electrical heating source in place of the uranium. Gas pumped through the mockup reached 3000o C, an impressive demonstration of the concept.
But, in 1959, DUMBO development was cancelled in favor of the graphite reactor designs that ultimately became Project NERVA. The CMF-4 group was reassigned, told to spend six months doing brainstorming on anything except rocketry.
The group explored all manner of exotic ideas, but only one of them concerns us today.
During this period, one of the project members, Bob Potter, reread Edgar Rice Burroughs' novel At the Earth's Core, and started to think about ways to get through rock more efficiently than by grinding it up. He considered the idea of simply melting the rock out of the way – and he thought of the high-temperature tungsten heating elements used in testing the DUMBO concept.
Potter borrowed a few pieces of local basalt stone from a nearby highway construction site, and the group rigged up a tungsten heating element in the lab. Pressing the white-hot tungsten against the basalt quickly produced a neat little hole.
Interestingly, the molten basalt flowed around the tungsten heating element, forming a sticky surface layer that shielded it from damage by air or water in the rock.
Further experiments soon followed, culminating in a tabletop device with an outside diameter of 2 inches.
Heated and pressed against rock, the penetrator would melt its way through.
The molten rock would flow through a hole in the center of the head and out the back, where high-pressure gas would blow it to the surface. At this point the device was just called a rock-melting penetrator; the name subterrene had not yet been attached to it.
The idea of using nuclear energy was not yet in the mix; the plan was for the penetrator to be powered by a connection to a generator on the surface.
Heated and pressed against rock, the penetrator would melt its way through.
The molten rock would flow through a hole in the center of the head and out the back, where high-pressure gas would blow it to the surface. At this point the device was just called a rock-melting penetrator; the name subterrene had not yet been attached to it.
The idea of using nuclear energy was not yet in the mix; the plan was for the penetrator to be powered by a connection to a generator on the surface.
Unfortunately, all good things must come to an end, and CMF-4's work on the penetrator was one of them. Bob Fowler, the head of the CMF group at Los Alamos, did not approve of the penetrator project, which he felt was not “proper” research. In 1962 he ordered the group to write up their results and move on to new projects, which they obediently did. The rock-melting penetrator was set aside, although that did not keep the Atomic Energy Commission from obtaining a patent on the idea.
Los Alamos Gets Back in the Game
The concept was not revived until eight years later.
The Los Alamos staff had a habit of meeting at a local pub after work on Fridays to kick ideas around in a more congenial environment.
On one Friday, someone brought up the old rock-melting penetrator idea, and suggested upgrading it with more modern materials.
It was suggested the concept could be improved by using heat pipes to connect a compact nuclear reactor to the tungsten heating element. Instead of heating the melting head with electricity from the surface, molten lithium would be heated by the reactor and pumped through the melting head.
The matter might have ended there if Los Alamos' congressional representative, Manuel Lujan, Jr., had not happened to wonder into the pub. When he stopped by CMF-4's table to ask what they were talking about, Eugene “Robbie” Robinson told him of their idea for a nuclear-powered tunneling machine.
Unfortunately, or perhaps fortunately, Representative Lujan misunderstood him and thought he was talking about an official Los Alamos program rather than a napkin-back discussion among off-duty scientists. He expressed his approval of the idea, and of the wisdom of the Atomic Energy Commission for sponsoring such a far-sighted, innovative project, and said he would contact the Joint Committee on Atomic Energy in Washington to express his pleasure with the program. This might prove rather awkward, since of course the AEC would have no idea what he was talking about.
Thinking quickly, Robbie phoned Norris Bradbury, the director of Los Alamos. Fortunately, Mr. Bradbury had a sense of humor about the whole thing – and, not only that, but felt the atomic penetrator was actually rather a good idea, and that the lab should organize a study of the concept!
During the spring, summer, and fall of 1970 a study group met to discuss the feasibility of the system. It was around this time that the device was given its name: the subterrene, as a terrestrial analogue to the submarine. In November the committee issued its report, “A Proposal for LASL Development of a Nuclear Subterrene,” recommending the paper study be expanded to a feasibility study, with the ultimate objective of building a device “capable of penetrating the earth to depths of tens of kilometers...
To extend geological and geophysical exploration into the earth's mantle.” It was thought a subterrene capable of reaching the mantle could be built within 10 to 15 years.
This was not the first time someone had tried to apply atomic energy to tunneling. William Adams of Lawrence Radiation Laboratory had proposed building a “needle reactor” as a probe to the Earth's mantle in the early 60s, but the idea had gone no further than an article in Time magazine. Other machines for using atomic energy for mining had been patented, but enjoyed even less success.
The Los Alamos subterrene proposal, on the other hand, was a serious investigation backed by a major government laboratory. And the time was right for a radically new approach to drilling technology. The country's energy situation was deteriorating, and the AEC had been directed to look into development of non-nuclear energy sources in addition to its old mission of atomic energy. The subterrene could offer a number of new capabilities.
For example, conventional drilling can only produce circular tunnels, since the drill works by rotating, while the subterrene's melting penetrator head could be of any shape desired.
The subterrene would have less environmental impact since it would produce little to no dust or vibration. It would last longer than conventional drills, which are quickly worn away by drilling through hard rock. It would require fewer personnel to operate.
The subterrene would have less environmental impact since it would produce little to no dust or vibration. It would last longer than conventional drills, which are quickly worn away by drilling through hard rock. It would require fewer personnel to operate.
But, most importantly, it was thought the system might be cheaper – the initial analysis suggested savings of up to $850 million dollars (1970 dollars) through 1990, on a development cost of $100 million.
Rowley and the other scientists speculated on a whole host of applications that might be opened up if the subterrene lived up to its promise. Aside from mining, excavating underground roads and pipes was an obvious use.
Chemicals and gasses could be stored in underground chambers.
Electrical energy could be stored in the form of underground pressurized air “batteries,” compressed in during periods of excess production and used to drive turbines when more energy was needed.
The subterrene could dig storage cavities for toxic and nuclear waste, too deep for them to ever trouble the surface. The heat and pressure found deep underground could be exploited for chemical processing.
Chemicals and gasses could be stored in underground chambers.
Electrical energy could be stored in the form of underground pressurized air “batteries,” compressed in during periods of excess production and used to drive turbines when more energy was needed.
The subterrene could dig storage cavities for toxic and nuclear waste, too deep for them to ever trouble the surface. The heat and pressure found deep underground could be exploited for chemical processing.
Cities, even farms, could be extended underground.
The most promising application, however, seemed to be geothermal energy.
The subterrene could be used to dig deep into the Earth's crust, to where the rock is heated by the mantle.
Unlike a conventional drilling machine, since the subterrene worked by melting its way through, its efficiency would actually improve with depth. Two vertical tunnels would be drilled, side by side, and a great chamber or cavern excavated at the bottom connecting the two. Water would be pumped down one tunnel, be vaporized by the hot temperatures at the cavern bottom, and steam would then be pumped up through the other tunnel, where it would be used to drive a turbine. Ordinarily, geothermal energy can only be tapped in areas where near-surface hot rocks and groundwater coincide, but this sort of plant, called a Hot Dry Rock plant, would only require the rocks.
The subterrene could be used to dig deep into the Earth's crust, to where the rock is heated by the mantle.
Unlike a conventional drilling machine, since the subterrene worked by melting its way through, its efficiency would actually improve with depth. Two vertical tunnels would be drilled, side by side, and a great chamber or cavern excavated at the bottom connecting the two. Water would be pumped down one tunnel, be vaporized by the hot temperatures at the cavern bottom, and steam would then be pumped up through the other tunnel, where it would be used to drive a turbine. Ordinarily, geothermal energy can only be tapped in areas where near-surface hot rocks and groundwater coincide, but this sort of plant, called a Hot Dry Rock plant, would only require the rocks.
In December, the subterrene proposal was reviewed by senior personnel at LASL, with highly mixed results. One reviewer called it one of the dumbest ideas in history. The dominant view, however, was more favorable.
In April of 1971, the program was submitted to the National Science Foundation. Funding was ultimately approved through the Research Applied to National Needs program and work began in 1972, with the first patent for a nuclear or electrical melting penetrator filed the same year.
Rapid Excavation by Rock Melting
The program was aimed at developing both electrical and nuclear subterrenes. In the first year of the project, the scientists, under the able leadership of John Rowley, focused on developing small-scale prototypes powered by external electrical sources. These would serve as a proof-of-concept of the rock-melting drill, and would be useful and desirable in their own right.
In particular, the group was interested in a device they called a Geoprospector, which would be relatively small – about a foot in diameter – and would be used to retrieve samples of underground mineral deposits. Aside from the Geoprospector, proposed near-future applications focused on other relatively shallow, small-diameter projects, such as drilling gas pipelines or drainage tunnels.
Several prototype drilling machines were built in the first year, ranging in size up to 11.4 cm in diameter. One was tested at Bandelier National Monument near Los Alamos in May of 1973, digging drainage holes in Indian ruins.
The drilling operation attracted a crowd of curious tourists, and it was decided to repeat the demonstration at a more politically useful venue – Washington, D. C.
The melting penetrator made its visit in mid-October. Four demonstrations were held at the Army Engineering Proving Grounds in Virginia over the course of two days in front of a crowd that included congressional representative, news media, and construction firms. A 50 mm penetrator drilled through a foot-thick slab of alluvium encased in steel, and then did it again in case anyone missed something the first time. Then, a second penetrator dug a vertical shaft. All told, about 300 people watched the demonstrations.
A few months later, a third demonstration was organized in Denver, Colorado, and then in Tacoma, Washington.
The Nuclear Subterrene
Although the small-diameter electrical prototypes were the focus of the team's efforts in the first year, design work continued on the nuclear system. Initial designs focused on building a nuclear-powered version of the melting penetrator, in which the reactor heat would simply melt through the rock.
However, it soon became clear that it would be more efficient to use a combination of either rock melting and mechanical cutting, or rock melting and thermal fracturing. Patents on each of these concepts were filed on each in January of 1974.
The version intended for use in soil and soft rock.used molten lithium pumped through a small nuclear reactor and circulated through the “annular melting penetrator,” which would reach temperatures of about 1,570o Kelvin, melting through a ring of rock in front of the machine.
While the rock in the middle of the ring would not melt, it would be detached from the rock around and behind it, allowing it to be easily broken up by the rotating mechanical cutters in the middle of the machine's face.
The rock that was molten would flow out and along the sides of the machine, being cooled by a heat exchanger to form a glass lining for the tunnel. In this design, the reactor heat is only a supplement to the cutters, which are analogous to the operation of a conventional tunnel-boring machine.
The second version was designed for harder rock.
As in the first version, an annular melting penetrator would melt a ring of rock in front of the machine, detaching the material in the center from the rock behind it. Then, needle-shaped “fracturing penetrators” would use heat to break up the the core. The rapid heating of the rock would cause it to expand, but this expansion would be uneven, with some hot areas expanding quicker than other, cooler areas. The difference in expansion would cause the rock to fracture and break up.
As in the first version, an annular melting penetrator would melt a ring of rock in front of the machine, detaching the material in the center from the rock behind it. Then, needle-shaped “fracturing penetrators” would use heat to break up the the core. The rapid heating of the rock would cause it to expand, but this expansion would be uneven, with some hot areas expanding quicker than other, cooler areas. The difference in expansion would cause the rock to fracture and break up.
As in the first version, the molten rock would be pressed against the side of the tunnel and cooled, forming a glass lining. The fractured rock would fall into a removal port, and be transferred to the surface for disposal by conveyor belt. Not visible on the diagram is a “clearing plate” that would periodically push forward from the fracturing penetrators, dislodging any stuck rock. Alternatively, the fracturing penetrators could be withdrawn by hydraulics to allow rock to fall past.
Safety was unlikely to be a serious concern. If anything went wrong, the reactor would be entombed underground. Even if leakage did occur for some reason – such as an accident in transport – the contemplated reactor designs would necessarily be very small, and therefore contain comparatively little radioactive material.
It was estimated that machines of these types could drill a 7.3-meter diameter tunnel at a rate of 1.5 meters per hour using a 25 MWth nuclear reactor. Hole diameters could be 12 meters or more. However, while these numbers sound impressive, it's worth pointing out that modern tunnel-boring machines can excavate tunnels as wide as 16 meters at rates of up to 4.8 meters per hour. The nuclear subterrene's performance could potentially be substantially improved with better materials and a higher-temperature reactor, but this was not to be.
The Later Years of the Subterrene
In 1975, the program's funding was transferred from the National Science Foundation to the newly born Energy Research and Development Administration. By this point, the funding agencies had directed the project to shift away from giant nuclear subterrenes and towards development of small, electrically-powered penetrators for use in geothermal drilling. In fact, the nuclear subterrene wasn't even mentioned in the program's final status report.
But, without the nuclear reactor, the subterrene simply wasn't economical. LASL looked for partners in industry to commercialize the system, but couldn't find any. The penetrator used up too much energy, it cost too much, and its advantages over existing methods – lower environmental impact, arbitrary tunnel shape – were too slight to justify using it. The program was shut down entirely in 1976.
However, like all technology development programs, the subterrene left heirs – in fact, its first progeny, the Hot Dry Rock program, was born almost immediately after the subterrene's own genesis in 1970. HDR was developed by LASL to explore one of the original applications of the subterrene, producing geothermal energy by drilling into deep, hot rock and using it to heat water. Research at LASL on HDR continued off and on until 1996, and included the construction of a test plant at Fenton Hill on the Los Alamos laboratory grounds.
The subterrene itself was less lucky. Subterrenes continued to occasionally appear in lists of promising new drilling technologies through the early 80s, and various rock-melting drilling techniques continue to be patented and discussed in engineering journals even today. But these are exclusively electrical systems.
However, while the nuclear subterrene was abandoned by the engineering community, it found a home in more unusual places. One was among the theorists of space exploration. In 1986, Dr. John Rowley and two other scientists from the subterrene program published a paper suggesting using nuclear subterrenes to excavate tunnels on the moon to shield colonists from radiation – a subselene, as they called it.
Subselenes have continued to intermittently appear in speculative scientific work on lunar colonization.
Subselenes have continued to intermittently appear in speculative scientific work on lunar colonization.
But the most creative descendant of the subterrene can only be the proposal to weaponize the system as a way to attack hardened underground military bases, as an alternative to nuking them. The RadioIsotope Powered Thermal Penetrator (RIPTP) does not use a nuclear reactor for heat; instead, it uses Thulium-170 or Ytterbium-168, highly radioactive artificial isotopes, which generate heat as they decay.
The RIPTP would be parachuted onto the ground above the base, and would then melt its way through the ground.
The motive power to push the subterrene through the ground would be provided by gravity; the penetrator would be about four times as dense as the molten rock in front of it and so would sink through it.
The RIPTP would be parachuted onto the ground above the base, and would then melt its way through the ground.
The motive power to push the subterrene through the ground would be provided by gravity; the penetrator would be about four times as dense as the molten rock in front of it and so would sink through it.
As it bores its way down, the RIPTP would form a bubble of magma and hot, high-pressure gasses behind itself. When it nears the underground base, the pressure of the gas and magma would burst the base walls explosively, destroying facilities near the breach through blast and fire. If the magma wasn't enough, incendiary explosives such as aluminum powder could be added.
Then, its work done, the RIPTP would keep borrowing downwards past the target, ultimately entombing itself several hundred meters further down."
Then, its work done, the RIPTP would keep borrowing downwards past the target, ultimately entombing itself several hundred meters further down."
<End quote, Atomic Skies>
I CAN THINK OF A FEW DOZEN REASONS WHY OUR GOVERNMENT MIGHT WANT A NUCLEAR DRILLER, BUT THERE SIMPLY IS NO PROOF WE HAVE ONE...NOR IS THERE PROOF WE DON'T.
I MUST WONDER WHY THE U.S. PATENT OFFICE WOULD ISSUE PATENTS ON DRILLING MACHINES POWERED BY NUCLEAR REACTORS IF THEY NEVER EXISTED, OR COULDN'T BE CREATED.
I WONDERED THE SAME THING ABOUT ALL OF TESLA'S INVENTIONS AND PATENTS.
IN 2012, CNN DID AN ARTICLE ABOUT 'INTERNATIONAL SCIENTISTS' WANTING TO DRILL DOWN TO THE EARTH'S MANTLE...SOMETHING THAT SEEMS TO HAVE BEEN ON WISH-LISTS OF SEVERAL GENERATIONS OF SCIENTISTS AND/OR GOVERNMENTS.
(ALL SCIENTISTS, AFTER ALL, ARE ATTACHED TO SPECIFIC NATIONS)
I MUST WONDER WHY THE U.S. PATENT OFFICE WOULD ISSUE PATENTS ON DRILLING MACHINES POWERED BY NUCLEAR REACTORS IF THEY NEVER EXISTED, OR COULDN'T BE CREATED.
I WONDERED THE SAME THING ABOUT ALL OF TESLA'S INVENTIONS AND PATENTS.
IN 2012, CNN DID AN ARTICLE ABOUT 'INTERNATIONAL SCIENTISTS' WANTING TO DRILL DOWN TO THE EARTH'S MANTLE...SOMETHING THAT SEEMS TO HAVE BEEN ON WISH-LISTS OF SEVERAL GENERATIONS OF SCIENTISTS AND/OR GOVERNMENTS.
(ALL SCIENTISTS, AFTER ALL, ARE ATTACHED TO SPECIFIC NATIONS)
THE ARTICLE BEMOANED THE DIFFICULTY WITH PIPES AND BITS, BUT DIDN'T EVEN MENTION A NUCLEAR DRILLING MACHINE, WHICH JUST MIGHT SOLVE THE PROBLEMS THE DRILL-HAPPY TEAM FACED.
REUTERS PICKED UP ON THE BILLION DOLLAR PROJECT AGAIN IN 2013, BUT LOOK AT THOSE OLD BREAKABLE DRILL BITS AGAIN!
THE BBC DID A SILLY LITTLE "SHOW-AND-TELL" ON HOW AWESOMELY DEEP GOING TO THE EARTH'S MANTLE WOULD BE, AND AT THE END OF THE QUITE BORING GRAPHIC PUT THIS:
REUTERS PICKED UP ON THE BILLION DOLLAR PROJECT AGAIN IN 2013, BUT LOOK AT THOSE OLD BREAKABLE DRILL BITS AGAIN!
THE BBC DID A SILLY LITTLE "SHOW-AND-TELL" ON HOW AWESOMELY DEEP GOING TO THE EARTH'S MANTLE WOULD BE, AND AT THE END OF THE QUITE BORING GRAPHIC PUT THIS:
"THE FORCES OF GRAVITY ARE PULLING EQUALLY IN ALL DIRECTIONS AND YOU ARE NOW WEIGHTLESS.
BUT DON'T GET TOO COMFORTABLE.
IT’S OVER 6,000C HERE - YOU WERE COOKED LONG AGO."
IT’S OVER 6,000C HERE - YOU WERE COOKED LONG AGO."
SEE?
THEREIN LIES ONE OF THE PROBLEMS WITH CONVENTIONAL DRILLING SYSTEMS...
BUT COULD EVEN A NUCLEAR DRILLER ACCOMPLISH THIS?
I MERELY WANT TO SEE ONE DIGGING BUNNY HOLES FOR THE MILITARY ELITE TO SHELTER IN, OR THE GOVERNMENTAL BIG GUYS, OR THOSE WHO CONTROL THE WORLD'S WEALTH...THEY ALL APPEAR TO NEED HIDING HOLES SUDDENLY, AND I STILL THINK THE SUBTERRENE, THE NUCLEAR VERSION, WOULD FILL THE BILL NICELY.
THERE JUST SEEMS TO BE A REAL FLURRY OF UNDERGROUND ACTIVITY LATELY, SUCH AS NORAD SPENDING AROUND $700 MILLION TO SCURRY BACK DEEP INTO CHEYENNE MOUNTAIN, CITING FEAR OF AN EMP, ALTHOUGH EMPs WERE CERTAINLY A POSSIBILITY WHEN NORAD CAME UP AND OUT OF CHEYENNE, YES?
EVEN IRAN HAS BEEN BUSY AS BEES TUNNELING UNDERGROUND.
YES, WE HAVE SPY EYES ON IRAN, NATURALLY!
THEREIN LIES ONE OF THE PROBLEMS WITH CONVENTIONAL DRILLING SYSTEMS...
BUT COULD EVEN A NUCLEAR DRILLER ACCOMPLISH THIS?
I MERELY WANT TO SEE ONE DIGGING BUNNY HOLES FOR THE MILITARY ELITE TO SHELTER IN, OR THE GOVERNMENTAL BIG GUYS, OR THOSE WHO CONTROL THE WORLD'S WEALTH...THEY ALL APPEAR TO NEED HIDING HOLES SUDDENLY, AND I STILL THINK THE SUBTERRENE, THE NUCLEAR VERSION, WOULD FILL THE BILL NICELY.
THERE JUST SEEMS TO BE A REAL FLURRY OF UNDERGROUND ACTIVITY LATELY, SUCH AS NORAD SPENDING AROUND $700 MILLION TO SCURRY BACK DEEP INTO CHEYENNE MOUNTAIN, CITING FEAR OF AN EMP, ALTHOUGH EMPs WERE CERTAINLY A POSSIBILITY WHEN NORAD CAME UP AND OUT OF CHEYENNE, YES?
EVEN IRAN HAS BEEN BUSY AS BEES TUNNELING UNDERGROUND.
YES, WE HAVE SPY EYES ON IRAN, NATURALLY!
GOOD SHOT FROM HIGH ABOVE IRAN!
WAY TO GO, TEAM!
WAY TO GO, TEAM!
THEN THERE ARE THE "LITTLE THINGS" I FIND, LIKE THIS:
Shelter as Big as the Empire State Building to Save One in Every Million People
Not just a shelter, but a year-round ‘survival resort’
Atchison, Kansas, June 13, 2013 – A massive underground complex encompassing over 2 million square feet is now being outfitted as the largest private shelter on Earth. The latest in a network of shelters built by The Vivos Group, this ‘Ark’ is also the first of its kind, being dubbed the Vivos Survival Shelter & Resort.
THAT'S NICE, YES?
AND THIS:Military Warning System Also Tracks Bomb-Size Meteors
Not just a shelter, but a year-round ‘survival resort’
Atchison, Kansas, June 13, 2013 – A massive underground complex encompassing over 2 million square feet is now being outfitted as the largest private shelter on Earth. The latest in a network of shelters built by The Vivos Group, this ‘Ark’ is also the first of its kind, being dubbed the Vivos Survival Shelter & Resort.
THAT'S NICE, YES?
AND THIS:Military Warning System Also Tracks Bomb-Size Meteors
"Orbiting satellites that keep watch for nuclear attack had detected a blinding flash of light over the Pacific several hundred miles southwest of Los Angeles.
On the ground, shock waves were strong enough to register halfway around the world.
On the ground, shock waves were strong enough to register halfway around the world.
Tension reignited until the Pentagon could reassure official Washington that the flash was not a nuclear blast. It was a speeding meteoroid from outer space that had crashed into the earth's atmosphere, where it exploded in an intense fireball."
COMFORTING THAT THEY'RE SO WATCHFUL, ISN'T IT?
NEXT QUESTION...
WHAT DOES THE MILITARY KNOW THAT JUST MAYBE WE SHOULD ALSO KNOW?
WHAT A LONG, LONG LIST THAT WOULD BE, RIGHT?
AND THEN THE HUFFINGTON POST PUBLISHED THIS ARTICLE:"Super-Rich Plan To Survive Apocalypse In Underground Luxury Condos"
NEXT QUESTION...
WHAT DOES THE MILITARY KNOW THAT JUST MAYBE WE SHOULD ALSO KNOW?
WHAT A LONG, LONG LIST THAT WOULD BE, RIGHT?
AND THEN THE HUFFINGTON POST PUBLISHED THIS ARTICLE:"Super-Rich Plan To Survive Apocalypse In Underground Luxury Condos"
NOT THAT EITHER ARE RENOWN FOR VALID INFORMATION, BUT BOTH ZEROHEDGE AND ENDOFTHEAMERICANDREAM ASKED IN JANUARY THIS YEAR:
"What Do They Know? Why Are So Many Of The Super Wealthy Preparing Bug Out Locations?"
AND THIS...AN UNDERGROUND NUCLEAR POWER STATION: Underground nuclear power station using self-regulating heat-pipe controlled reactors US 4851183 A
ACTUALLY, NOT A BAD IDEA!
LAST ONE, FOR NOW, FROM AN INVESTMENT WEBSITE: "The Government is Building Underground BUNKERS on a Mass Scale"
"...there are agencies within the US government that dedicate time, money (lots of it) and resources to the study of scenarios that can be considered The End of The World As We Know It."
YEAH, YOU CAN CALL ME PARANOID BUT I HAVE DOCUMENTS PROVING OTHERWISE...NO, SERIOUSLY...
I AM, HOWEVER, EXCEPTIONALLY CURIOUS.
AND I DON'T LIKE NOT KNOWING WHAT I WANT TO KNOW.
AND I HAVE NEVER LIKED THE FACT THAT "COMMON MAN" IS NOT AFFORDED THE SAME CHANCE AT SURVIVAL, THE SAME PROTECTION AS THOSE WE "ELECT" (I USE THE TERM LOOSELY).
ONE OF THOSE NUCLEAR-POWERED DRILLING MACHINES MIGHT COME IN QUITE HANDY IF OUR GOVERNMENT EVER GOT CONCERNED WITH WHAT WOULD BECOME OF ABOUT 300 MILLION OF US SHOULD WE COME UNDER NUCLEAR ATTACKS, OR BE HIT BY A 'NEAR-EARTH OBJECT'...BUT CONGRESS PULLED FUNDS FOR OUR SURVIVAL LONG AGO, EVEN SOLD OFF MOST OF THE OLD CIVIL DEFENSE SHELTERS TO PRIVATE INDIVIDUALS AND BUSINESSES.
OTHER NATIONS HAVE UNDERGROUND BUNKERS FOR THEIR CITIZENS, BUT NOT OURS.
ADMITTEDLY, AFTER 50 YEARS, I AM STILL TICKED-OFF ABOUT THAT.
[MORE ON THAT STORY <HERE>]
AND I WANT A NUCLEAR-POWERED DRILLING MACHINE...STAT!
JUST IN CASE....
SO WE CAN ALL HAVE A NICE UNDERGROUND BUNNY HOLE SHOULD THE PROVERBIAL "SHTF".
SINCE MY INTERNATIONAL READERS OFTEN OUTNUMBER AMERICAN READERS ON ANY GIVEN DAY, IF ANY OF YOU KNOW OF A NUCLEAR DRILLING DEVICE YOUR COUNTRY MAY BE USING, DO LET ME KNOW, WILL YOU?
I'D BE DELIGHTED TO PADDLE OVER IN THE OLD CANOE TO HAVE A LOOK!
"MEGAMOUTH" TUNNEL
WE COULD SURELY PACK A LOT OF THE GENERAL PUBLIC INTO PLACES LIKE THIS, COULDN'T WE?
SOME JOKE ABOUT IT TO KEEP US "CALM", BUT CONGRESS HAS A BUNKER. VERY NICE ACCOMMODATIONS, TOO.
A BIT MORE INFO ON GREENBRIER <HERE>, WITH OTHER PHOTOS.
WE COULD SURELY PACK A LOT OF THE GENERAL PUBLIC INTO PLACES LIKE THIS, COULDN'T WE?
SOME JOKE ABOUT IT TO KEEP US "CALM", BUT CONGRESS HAS A BUNKER. VERY NICE ACCOMMODATIONS, TOO.
A BIT MORE INFO ON GREENBRIER <HERE>, WITH OTHER PHOTOS.
I haven't a clue WTH happened with spacing and fonts in the above article. I've tried 2 'repairs' to no avail...mea culpa....bad day for blogging maybe?
ReplyDelete